
Advanced ReactJS
For Drupalers

1

DEBUG ACADEMY

● AKA “Stateless” components
○ Now “functional” components,

thanks to hooks
● Allows for very concise syntax
● Able to avoid this
● Can do almost everything class

components can do
● It’s what the cool kids are doing

Class or Functional components?

Class components Functional

2

● Contain lifecycle methods
○ Similar to Drupal hooks

● Natively support state
● Include this
● Greater set of functionality
● Encourages explicit code

DEBUG ACADEMY

Fully decoupled React Apps
● React-router-dom

○ Declarative, relatively straightforward routing
○ Used by the JS Initiative’s drupal-admin-ui

● Next.js
○ Focus on server side rendering
○ More opinionated than react-router-dom

● Gatsby
○ Allows “building” website and deploying only static files
○ Saves API data in static files

3

DEBUG ACADEMY

react-router-dom Fundamentals

● <BrowserRouter>

○ Wraps the app which
has routes

● <Link>

○ Links to a path
● <Route>

○ Wraps route-specific
content

<BrowserRouter>
 <Link
 to={`/node/${node.id}`}
 >{node.title}</Link>
 <Route
 path=“/”
 component={LoginForm}
 exact={true}>
 <Route
 path=“/node/:nid”
 render={({match}) => (
 <DNode nid={match.params.nid}>
)}>
</BrowserRouter>

4

DEBUG ACADEMY

Styling options

● Use CSS file(s) in component(s)
○ Css-loader package with

webpack enables this
○ Import ‘./css/style.css;

● Then add normal CSS class
names to components
○ className = “my-css-class”

● Create JS object with CSS
properties, like:
myStyle={marginTop: `5px`}

● Pass the style object to a
component’s style prop:
<Title style={myStyle} />

● Worse performance than CSS
classes

5

CSS resides in CSS file(s) Inline styles

cont...

DEBUG ACADEMY

Styling options (cont’d)

● Write standard CSS using template literals:
const Title = styled.h1` font-size: 1.6em;
 color: blue; `;

● Allows dynamic CSS rules using JS
● Unused CSS is not included in rendered app
● CSS is written in specific components
● No more conflicting CSS - same benefits of inline CSS

6

Styled-components

DEBUG ACADEMY

Allows rendering React components anywhere on the DOM!

● Pass the component and the regular DOM element:

ReactDOM.createPortal(Component, domElement);

● Context, event bubbling, error handling, etc - continues to function!
● Standard Component, except it can appear outside of the ‘app’

React Portals

7

DEBUG ACADEMY

Error Handling
1. Rendering Errors

○ When react does not know
what to Render

○ Create Error Boundary
Component

○ Wrap component in Error
Boundary

2. Other JS errors
○ E.g. Error in event handler
○ Simply use try {} catch {}

8

DEBUG ACADEMY

Creating Error Boundaries

● An Error Boundary is a special type of custom component
● It must be created as a class component
● To create an error boundary, implement one or both of these lifecycle

methods:

● static getDerivedStateFromError() { }

○ Return new state values, like: return { caughtError: true };
● componentDidCatch()

○ For logging information after an error
○ Can also update state here

9

DEBUG ACADEMY

Implicit vs Explicit state
State is passed to child components Implicitly or Explicitly

● Implicit state
○ Developer may not care to know about the passed state
○ Ex: React Context, React.cloneElement

● Explicit state
○ App developer deliberately passes state
○ Immediately apparent that state is being passed
○ Ex: Higher Order Components (HOC), Render props

10

DEBUG ACADEMY

Implicit state w/React.cloneElement
Implicitly populates a components children and/or props.

● Generates a copy of component & passes props
● Overwrites conflicting props as needed

11

<List type=“ordered”>
 <ListItem text=“An item” />
 <ListItem text=“Another item” />
</List>

DEBUG ACADEMY

New Cloned element:

12

Behind the scenes, React.cloneElement() implicitly passes
the list type (& more) to the ListItem(s):

render() {
 return React.cloneElement(ListItem, [props], [...children]);
}

DEBUG ACADEMY

Making state available downstream

13

React Context API

● Comes OOTB with React
● Straightforward set up
● Shares state - no bells and

whistles
● New & shiny, and covers most

use cases

Two primary approaches for implicitly passing state:

Redux

● Not part of React, but plays nicely
with it

● Comes with Debug tool
● Can “time travel” through history

when debugging
● Supports middleware
● Very robust

DEBUG ACADEMY

React Context
Easily provide data to nested components

Providing Context

● Initialize new context:

export const UserContext = React.createContext({ user });

● Override initial context for child components:

<UserContext.Provider value={masqueradeAsUser}>

</UserContext>

14

DEBUG ACADEMY

React Context (cont’d)
Receiving Context

● Pass context as prop to a component

<MyContext.Consumer>

 {activeUser => <WelcomeBlock user={activeUser}/>}

</MyContext.Consumer>

● Or get context within a functional component:

let activeUser = useContext(activeUser);

15

DEBUG ACADEMY

Redux
React’s context API is good for most applications.

In advanced use cases, utilizing Redux for the sake of
its toolset may be worthwhile.

16

“

16

DEBUG ACADEMY

● Create a reducer function which contains logic for updating
redux-provided state

● Create store for storing state
● Wrap components in store’s provider

Redux: Initialization

import { createStore } from "redux"
import { Provider } from 'react-redux';
const myReducer = function reducer(state = initialState, action) {
 switch(action.type) {
 case "USER_VIEW": return { totalViews: state.totalViews + 1 }}
 return state; }
const store = createStore(myReducer);
<Provider store={store}><App /></Provider>

17

DEBUG ACADEMY

● Redux’s HOC, connect()(), provides component’s props
● Integrate appropriate actions to update state
● Update myNestedComponent’s export

Redux: Retrieving State

Import { connect } from react-redux;
// myNestedComponent code..
const mapStateToProps = state => ({ totalViews: state.totalViews});
export default connect(mapStateToProps)(myNestedComponent);
const viewAction = function userViewedPage(user) {
 return {
 type: ‘VIEW',
 totalViews: user.totalViews,};}
export default connect(mapStateToProps,
viewAction)(myNestedComponent);

18

DEBUG ACADEMY

HOC
● HOC’s are a

replacement for
inheritance in react

● Explicitly pass
behavior or props
to a component

● Even lifecycle hooks
or props can be
“passed down”

function logProps(WrappedComponent) {
 return class extends React.Component {
 componentWillReceiveProps(nextProps) {
 console.log('Current props: ', this.props);
 console.log('Next props: ', nextProps);
 }
 render() {

// Wraps the input component in a container,
// without mutating it. Good!

 return <WrappedComponent {...this.props} />;
 }
 }

19

DEBUG ACADEMY

When using an HOC, props can come from 3 sources:

1. Provided from within the HOC
2. Provided from the component itself
3. Passed in as params by the developer

And components cannot have multiple props with the same prop name

HOC’s: Keep in mind..

20

DEBUG ACADEMY

A technique for explicitly passing value(s) from a component to its children

● Dev creates function which returns their component
● It’s passed to component as a prop, which the component then renders
● Enables passing values to render prop without coding custom logic in

parent
● Can also avoid bubbling state up & necessitating parent re-renders

Render prop

21

DEBUG ACADEMY

Persisting state across sessions
● Save up to 10mb of data to user’s browser using localStorage
● Save data, such as form data, on state change:

localStorage.setItem(key, JSON.stringify(myDataObject));

● Then retrieve data on component load:
const dataString = localStorage.getItem(key);

With this, we can finally implement autosave for Drupal!

22

DEBUG ACADEMY

Optimizing “Pure” components
● Some components always return the same output when

given the same props
● “Pure” or “Memoized” components do not re-render

when props are the same
● To memoize a component class:

Class MyComponent extends React.PureComponent

● To memoize a function component:
Const MyPureFuncComponent = React.memo(function MyComponent...);

23

DEBUG ACADEMY

Asynchronous component loading
● Loading a component normally:

import { add } from './math';

// ...

console.log(add(16, 26));

● Loading a component asynchronously:

import("./math").then(math => {

 console.log(math.add(16, 26));

});

24

DEBUG ACADEMY

Lazy-loading with <Suspense>

Wrap dynamic import in
React.lazy(func());

Ensures slow
components are
non-blocking

Wrap with:
<Suspense fallback={..}>
for ‘loading..’ component

const OtherComponent = React.lazy(() =>
import('./OtherComponent'));
function MyComponent() {
 return (
 <div>
 <Suspense fallback={<div>Loading...</div>}>
 <OtherComponent />
 </Suspense>
 </div>
);
}

25

DEBUG ACADEMY

Accessibility Conerns

● Drupal’s meta info is very
good

● Drupal’s HTML is very
accessible OOTB

● Consider accessibility
implications when fully
decoupling

Server side rendering w/Node
can improve accessibility

26

DEBUG ACADEMY

Decoupling Drupal

2
7

DEBUG ACADEMY

Methodologies
There are various approaches for decoupling with
Drupal.

● Fully decoupled (“headless”)
● Pseudo-decoupled
● Progressively decoupled
● Supplemental

28

DEBUG ACADEMY

● Drupal acts as a content repository

● Drupal provides no public front end

● A front end is built independently

● The front end consumes data from Drupal via API

Fully decoupled (headless)

29

DEBUG ACADEMY

The same model as fully decoupled, plus:

● Drupal provides layout configuration information via API

● The front end uses the layout information to assemble
pages

● Enables ‘site builders’ to update site layout via Drupal

Pseudo-decoupled

30

DEBUG ACADEMY

● Drupal provides a front end as standard Drupal theme

● Decoupled apps are embedded within certain areas of
website, such as

○ Within a Drupal block

○ As a specific region’s content

○ Even replacing the entire <body>

Progressively decoupled

31

DEBUG ACADEMY

Supplemental
● Drupal provides entire front end
● Drupal developer inserts data as DOM attributes
● JS extracts data from DOM elements
● Supplemental App(s) inserted alongside Drupal

elements
○ E.g. supplement form integer widget with React

slider widget

32

DEBUG ACADEMY

Starting a new decoupled app

33

DEBUG ACADEMY

● Contenta

● Reservoir

● Drupal Boina (Gatsby)
Github.com/weknowinc/Drupal-boina (drupal starter)

○ For Gatsby

○ Github.com/weknowinc/Gatsby-starter-drupal-boina
(gatsby starter)

● Vanilla Drupal

Starting a Decoupled Drupal project

34

DEBUG ACADEMY

Drupal aims to be API-first, and it’s headed in that direction.

● JSONAPI
○ Endorsed by Dries, de facto standard

● GraphQL
○ Has user interface for navigating data structures: GraphiQL
○ Can be set up server side or client side
○ Retrieves only the fields you request
○ Can be configured to simplify complex queries

● Via DOM element attributes
○ Note: Impractical for ‘heavily’ decoupled implementations

Exposing Drupal data

35

DEBUG ACADEMY

GraphQL
A spec -- Can be implemented in any language

● Server Side: Drupal module (drupal/graphql)
○ Can be configured to run custom db queries

● Client side: graphql-compose
○ Can map JSON API endpoints to graphql

36

DEBUG ACADEMY

Drupal fields regularly reference other entities.

Options for fetching referenced content:
● Sequential JSONAPI requests
● JSONAPI’s “include=field_name” query param

○ + Jsonapi Defaults (Submodule of JSON:API Extras)
● Subrequests module

○ Enables parallel requests w/single Drupal bootstrap
● Server-side GraphQL (Server-side or Client-side)

○ Highly customizable endpoints via backend development

GET’ing related Drupal data

37

DEBUG ACADEMY

Looking ahead: GatsbyJS
Nothing to do with the great gatsby..

“Blazing fast site generator for react”

● Exports public API “get” calls into JSON files
● For POSTs:

○ Integrate with external services when possible
● Only deploy static files, no longer deploy Drupal

38

DEBUG ACADEMY

● Use GraphQL for API calls

○ Gatsby plugin for client side GraphQL available!

● Create new app using GatsbyJS

● Deployment: Export “build artifacts” from Gatsby app

○ Downloads public API endpoints into static files!

○ Enables deploying a truly static website

● Gatsby starter: Github.com/weknowinc/Gatsby-starter-drupal-boina

Fully decoupled static site w/Gatsby

39

DEBUG ACADEMY

Gatsby-specific techniques
Gatsby Packages

● gatsby-image
● Gatsby-source-drupal
● Gatsby-remark-drupal
● Gatsby-transformer-remark
● Gatsby-remark-images
● Gatsby-remark-external-links
● Gatsby-plugin-sharp
● Gatsby-plugin-react-helmet

40

Drupal site setup

○ Drupal: provide content in
markdown (tui_editor)

○ Preprocess inline-images
in markdown
(gatsby-remark-drupal)

○ Deploy your site directly
from Drupal (build_hooks
module, allows auto-builds
to netlify)

DEBUG ACADEMY

Career-changing Drupal 8 PT Course

Part-time 3 month
Drupal 8 Web Dev course
We build, launch, & contribute Drupal
projects in class!

Begins June 2nd, 2019

Applications close as soon as class is full.

Other courses
1-2 day courses offered periodically
(Including ReactJS for Drupal)

We come to you: Tailored on-site team
training available.

41

DEBUG ACADEMY

(copied, do research / rewrite this:)
● GraphQL - serve mock data with graphql-tools from Apollo

GraphQL
● Node.js - generate server-side w/JSON Schema faker
● React - integrate API testing w/Jest
● Node.js user JSON Server to generate w/local sample.json files

Mock API’s for distributed + external +
local dev

42

DEBUG ACADEMY

React Context

4
3

DEBUG ACADEMY

Next.JS Fundamentals

● <BrowserRouter>

○ Wraps the app which
has routes

● <Link>

○ Links to a path
● <Route>

○ Wraps route-specific
content

<BrowserRouter>
 <Link
 to={`/node/${node.id}`}
 >{node.title}</Link>
 <Route
 path=“/”
 component={LoginForm}
 exact={true}>
 <Route
 path=“/node/:nid”
 render={({match}) => (
 <DNode nid={match.params.nid}>
)}>
</BrowserRouter>

4
4

DEBUG ACADEMY

Sample Section Divider

4
5

DEBUG ACADEMY

Sample Section Divider

4
6

DEBUG ACADEMY

I’m a Section
Divider
Break up sections with
breather slides

47

DEBUG ACADEMY

Here Is An Example For You

Large callout copy can
be larger than body
copy, as shown here.

<style>
 .debug-class::after {
 Content:“gettin’ a job”;
 visibility: visible;
 }
</style>

4
8

DEBUG ACADEMY

Here Is An Example For You

Large callout copy
can be larger than
body copy, as
shown here.

<style>
 .debug-class::after {
 content:”gettin’ a job”;
 visibility: visible;
 }
</style>

49

DEBUG ACADEMY

Heading One

This is the standard size of copy.
Probably the smallest it will go.

Heading Three

● Lorem ipsum dolor
● Vesti ante primus luctus
● Posure ultrices ligula in turpis

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

● Vesti ante primus luctus
● Posure ultrices ligula in turpis
● Lorem ipsum dolor

50

Heading Two Heading Two

DEBUG ACADEMY

Heading One

This is the standard size of copy.
Probably the smallest it will go.

Heading Three

● Lorem ipsum dolor
● Vesti ante primus luctus
● Posure ultrices ligula in turpis

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

● Vesti ante primus luctus
● Posure ultrices ligula in turpis
● Lorem ipsum dolor

Heading Two Heading Two

51

DEBUG ACADEMY

When a variable is passed by value, it means that the function called actually
receives a copy of the variable (this is the default PHP behavior).

If the function makes any changes to the variable it receives, it only makes
changes to the copy of the variable - the original variable remains unchanged.

Passing Variables by Value ($variable)

function myfunction($variable) {
 // Any work done on $variable in here will only
 // happen on a copy of the $variable received.
 // When the function completes, the copy of $variable
 // within the function will simply cease to exist
}

52

DEBUG ACADEMY

function myfunction($variable) {
 // Any work done on $variable in here will only
 // happen on a copy of the $variable received.
 // When the function completes, the copy of $variable
 // within the function will simply cease to exist
}

Passing Variables by Value ($variable)
When a variable is passed by value, it means that the function called actually
receives a copy of the variable (this is the default PHP behavior).

If the function makes any changes to the variable it receives, it only makes
changes to the copy of the variable - the original variable remains unchanged.

53

DEBUG ACADEMY

Sample Heading

I am sample text, that
goes with the above
sample heading. Type
anything you want in
this box, it’ll explain all
the good stuff you want

● Item one
● Item two
● Item three
● Item four
● Item five

54

DEBUG ACADEMY

I am a quote or
impactful statement!

55

“

55

DEBUG ACADEMY 56

function myfunction($variable) {
 // Any work done on $variable in here will only
 // happen on a copy of (highlight text color), to indicate
change.
 // When the function completes, the copy of $variable
 // within the function will simply cease to exist
}

Try It With Me

DEBUG ACADEMY 57

DEBUG ACADEMY

Sample Heading Goes Here

58

I am sample copy.
Be mindful of how .copy-code much copy goes on each slide.

Short digestible content is the best.

I am sample copy.
Be mindful of how much copy goes on each slide.

Short digestible content is the best.

DEBUG ACADEMY

Sample Heading Goes Here
I am sample copy.
Be mindful of how .copy-code much copy goes on each slide.

Short digestible content is the best.

I am sample copy.
Be mindful of how much copy goes on each slide.

Short digestible content is the best.

59

DEBUG ACADEMY

Career-changing Drupal 8 PT Course

Part-time 3 month
Drupal 8 Web Dev course
We build, launch, & contribute Drupal
projects in class!

Begins June 3rd 2018 (Next weekend!)

Applications close as soon as class is full.

Other courses
1-2 day courses offered periodically
(Including ReactJS for Drupal)

We come to you: Tailored on-site team
training available.

60

DEBUG ACADEMY

Thank You!

6
1

DEBUG ACADEMY

Thank You!

6
2

